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ABSTRACT 
 

Horizontal Directional Drilling (HDD) is extensively used in geothechnical engineering. In a 

variety of conditions it is essential to predict the torque required for performing the reaming 

operation. Nevertheless, there is presently not a convenient method to accomplish this task. To 

overcome this problem, in this research, the application of computational intelligence methods 

for data analysis named Support Vector Regression (SVR) optimized  by  differential 

evolution algorithm (DE) and Adaptive Neuro-Fuzzy Inference System (ANFIS) to estimate 

of the required rotational torque to operate horizontal directional drilling is demonstrated. 

Three ANFIS models were implemented, ANFIS–subtractive clustering method (ANFIS-

SCM), ANFIS–grid partitioning (ANFIS-GP) and ANFIS–fuzzy c–means clustering method 

(ANFIS-FCM). The estimation abilities offered using SVR-DE, ANFIS-FCM, ANFIS-SCM, 

ANFIS-GP were presented by using field data given in open source literatures. In these 

models,  the rotational torque (M) is used as the output parameter, while the length of drill 

string in the borehole (L), axial force on the cutter/bit (P), rotational speed (revolutions per 

minute) of the bit (N), the radius for the ith reaming operation (Di), the mud flow rate (W), the 

total angular change of the borehole (KL), and the mud viscosity (V) are the input parameters. 

To compare the performance of models for rotational torque to operate horizontal directional 

drilling prediction, the coefficient of correlation (R2) and mean square error (MSE) of the 

models were calculated, indicating the good performance of the ANFIS-SCM model. 
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1. INTRODUCTION 
 

The origin of Horizontal directional drilling (HDD) dates back to the early 1970s. The HDD 

has been used extensively throughout the world to construct underground pipeline systems 

[1]. Most pipelines, including those employing HDD, are installed in soil formations for 

which engineers have accumulated a great amount of experience [2,3]. Reasonable 

mechanical models and corresponding equations have therefore been developed for 

calculating various construction related parameters. However; there is a lack of such a 

methodology in more difficult situations. A major concern of many HDD projects is what 

amount of rotational torque should be used. It has been established that the required 

rotational torque at the drill rig depends on different  parameters, including length of drill 

string in the borehole, drilling method, borehole trajectory, geological conditions, rotary 

speed, axial force on bit, reamer cutter/bit size and type, drilling mud properties and 

borehole diameter [4,5]. However, relatively little quick research has been done in this area. 

In the field, Lan et al. [2] utilized regression model for prediction of rotational torque. 

Although previous effort is appreciated but in many cases, the aforesaid empirical models 

are not capable of distinguishing the sophisticated structures involved in dataset. In this 

study, utilize of developed methods such as artificial intelligence methods, which can 

successfully model the behavior of nonlinear involved in data, is useful. Some research 

works were carried out using artificial intelligence methods in the areas of drilling 

engineering. For example, Madandoust et al. [6] used ANFIS model for prediction of the 

concrete compressive strength by means of core testing. Feili Monfared et al. [7] presented 

an ANFIS model for advanced prediction of bottomhole circulating pressure in 

underbalanced drilling operations. Rad et al. [8] predicted the rock mass rating system based 

on continuous functions using Chaos–ANFIS model.  

The main scope of this study is the comparison between several artificial intelligence 

methods for data analysis named ANFIS–subtractive clustering method (ANFIS-SCM), ANFIS-

grid partitioning (ANFIS-GP), ANFIS–fuzzy C-means clustering method (ANFIS-FCM) and 

support vector regression (SVR) optimized  by  differential evolution algorithm (DE) to estimate 

of the required rotational torque to operate horizontal directional drilling is demonstrated.  

In every SVR modeling, a series of user-defined parameters exist that required to be 

chosen by user precisely. Incorrect input of aforementioned parameters by user can lead to 

erroneous and even deceptive results. Hence, it is crucial to employ a potent optimization 

algorithm for searching the proper value of these parameters [9]. By now, there have been 

several optimization algorithms, such as genetic algorithm (GA) inspired by the Darwinian 

law of survival of the fittest and biogeography-based optimization (BBO) inspired by the 

migration behavior of island species. Also, recently new optimization algorithms are 

developed consisting of charged system search (CSS) [10], ray optimization (RO) [11], 

democratic particle swarm optimization (DPSO) [12], colliding bodies optimization (CBO) 

[13] and enhanced colliding bodies optimization (ECBO). In this paper, in order to achieve 

the above goal, DE is applied as the searching strategy for finding the optimal value of user-

defined parameters. The prediction abilities offered using models were presented by using 

field data given in open source literature. 
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2. MATERIALS AND METHODS 
 

2.1 The methodology of adaptive network-based fuzzy inference system 

Jang [14] proposed an ANFIS algorithm, which is based on the Sugeno fuzzy inference 

model. The ANFIS can construct an input–output mapping based on both the fuzzy if–then 

rules and the stipulated input–output data pairs. The if-then rules of Sugeno fuzzy inference 

model are often applied for obtaining the inference of imprecise model, and can be made a 

conclusion in the indefinite system, which is better than human experience. These if–then 

rules base on stipulated input–output training data pairs by appropriate membership 

functions are produced. The ANFIS employs the neural training process to adjust the 

membership function and the associated parameter that approaches desired data sets [15].  

Generally, the ANFIS system includes 5 layers excluding input layer. 

Layer 0: this layer is the input layer. It has n nodes where n is the number of inputs to the 

ANFIS system. 

Layer 1: this layer is the fuzzification layer. In this layer membership functions (MFs) of 

input variables are used. Each node i in this layer generates a membership grades of a 

linguistic label. For instance, the node function of the ith node that is defined as follows:, 
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where, x is the input to node i, and Ai is the linguistic label associated with this node; and 

 , ,i i iV b , is the parameter set that changes the shapes of the MF. 

Layer 2: each node in this layer calculates the "firing strength" of each rule via 

multiplication (Eq.2). 
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Layer 3: this layer is the normalization layer. Nodes are fixed in this layer and are labeled 

with N, indicating that they play a normalization role. This layer normalizes the strength of 

all rules according to the equation 
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where wi is the firing strength of the ith rule which is computed in Layer 2. Node i computes 

the ratio of the ith rule’s firing strength to the sum of all rules’ firing strengths. 

Layer 4: this is a layer of adaptive nodes. Every node in this layer calculates a linear 

function where the function coefficients are adapted by using the error function of the multi-
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layer feed-forward neural network. 

 
4 ( )i i i i i i iQ W f W p x q y r     (4) 

 

where, 
iW  is the output of layer 3.  

Layer 5: this is the output layer that its role is the summation of the net outputs of the 

nodes in the previous layer. The output is computed as: 
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For identify the antecedent MFs,  clustering methods are extremely important for 

explorative data analysis. Three types of these methods (GP, SCM and FCM) are described 

below.  

 

2.1.1 Grid partitioning method 

Grid partition divides the data space into rectangular sub-spaces using axis paralleled 

partition based on pre-defined number of membership functions and their types in each 

dimension, as shown in Fig. 1. The wider application of grid partition in FL and FIS is 

blocked by the curse of dimensions, which means that the number of fuzzy rules increases 

exponentially when the number of input variables increases. For example, if there are 

averagely m  MF for every input variable and a total of n  input variables for the problem, 

the total number of fuzzy rules is 
nm . It is obvious that the wide application of grid 

partition is threatened by the large number of rules. Grid partition is only suitable for cases 

with small number of input variables [16,14].  

 

 
Figure 1. Grid partition of an input domain with two input variables and two membership 

functions for each input variable [16] 
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2.1.2 Subtractive clustering method 

The subtractive clustering method (SCM) is proposed by Chiu [17], by extending the 

mountain clustering method [18]. The aim of Chiu’s SCM identification algorithm  is to 

estimate both the number and initial location of cluster centers and extract the TSK fuzzy 

rules from input/output data. SCM operates by finding the optimal data point to define a 

cluster center based on the density of surrounding data points. This method is a fast 

clustering method designed for high dimension problems with a moderate number of data 

points. The algorithm for this method is as follows: 

Step 1: Consider a collection of n data points  1 2 3, , ,..., nX X X X , in an M–dimensional 

space. Since each data point is a candidate for cluster center, a density measure at data point

iX that is defined as shown in Eq. 6, 
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where, 
ar  is a positive constant.  

Step 2: The data point with the highest density measure is selected as the first cluster 

center. Let
1,cX  be the point selected and

1cD  its density measure. Next, the density measure 

for each data point 
ix  is revised as Eq. 7, 
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where, rb is a positive constant.  

Step 3: The next cluster center 
2cX is selected and all of the density calculations for data 

points are revised again. This process is repeated until a sufficient number of cluster centers 

are generated. 

The combination of ANFIS and subtractive clustering has been widely applied in 

function approximation and resolving engineering problems [19-21]. 

 

2.1.3. Fuzzy C-means clustering method 

Fuzzy c-means (FCM) method is proposed by Bezdek [22]. FCM is a method of clustering 

which allows one piece of data to belong to two or more clusters. This method is frequently 

used in pattern recognition. The FCM partitions a collection of n vector , 1,2,...,iX i n , into c 
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fuzzy groups, and finds a cluster center in each group such that a cost function of 

dissimilarity measure is minimized. The steps of FCM algorithm are therefore, first 

described in brief. 

Step 1: Chose the cluster centers , 1,2,..., ,ic i c  randomly from the n points

 1 2 3, , ,..., nX X X X . 

Step 2: Compute the membership matrix U using the Eq.8, 
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where, ,ij i jd c x   is the Euclidean distance between ith cluster center and jth data point, 

and m is the fuzziness index. 

Step 3: Compute the cost function according to the Equation (9). Stop the process if it is 

below a certain threshold. 
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Step 4: Compute new c fuzzy cluster centers , 1,2,..., ,ic i c using the Equation (10). 
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go to step 2. 

 

2.2 Hybrid support vector regression with differential evolution algorithm 

2.2.1 Support vector regression 

Support vector machines (SVMs) has been first proposed by Vapnik [23]. There are two 

main categories for SVMs: support vector regression (SVR) and support vector 

classification (SVC). SVM is a learning system using a high dimensional feature space. It 

yields prediction functions that are expanded on a subset of support vectors. SVM can 

generalize complicated gray level structures with only a very few support vectors and thus 

provides a new mechanism for image compression. A version of a SVM for regression has 

been introduced in 1997 by Vapnik et al. [24]. SVR is the most common application form of 

SVMs. An overview of the basic ideas underlying SVMs for regression and function 
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estimation has been given in [25]. 

Let the training samples be denoted as      1 1{ , | , ,..., , },n nXY x y x y x y where n is the 

number of training samples. In SVR, the ultimate goal is to find linear relation between n-

dimensional input vectors ,nx R  and output variables y R  as follow: 

 

( ) Tf x w x b   (11) 

 

where, b and w are offset of the regression line and the slope respectively. For determining 

the values of b and w, it is necessary to minimize following equation; 
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Loss function, utilized in SVR is ε-insensitive which has been proposed by Vapnik [23] 

as below; 

 

0 ( )
( )

( )

i i

i i

i i

if y f x
y f x

y f x Otherwise





  
  

 

 (13) 

 

This problem can be reformulated in a dual space by; 
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where, *, 0i i   are positive Lagrange multipliers. C is regulated positive parameter which 

determines trade-off between the weight vector norm w  and approximation error. After 

calculation of Lagrange multipliers i  
and *

i , training data points, those meeting the 

conditions * 0i i   , will be applied to construct the decision function. Hence, the best 

linear hyper surface regression is given by; 
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which desired weight vector of the regression hyper plane is given by; 
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In nonlinear regression, Kernel function is applied for mapping input data onto higher 

dimensional feature space in order to generate a linear regression hyper plane. In the case of 

the nonlinear regression, the learning problem is again formulated in the same way as in a 

linear case, i.e., the nonlinear hyperplane regression function becomes; 
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where, ( , )iK x x is kernel function which is defined as follow; 

 

( , ) ( ) ( ) , 1,...,T
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where, ( )ix and ( )jx are projection of the xi and xj in feature space respectively.  

One may choose any arbitrary kernel functions, e.g., Radial Basis Function (RBF)
 

  2, exp( 2 ), 0i j i jK x x x x      , linear kernel function    , , ,i j i jK x x x x  polynomial kernel 

function    , ( , 1) , 0d

i j i jK x x x x d   ,  etc. In highly non-linear spaces, RBF kernel usually 

yields more promising results in comparison with other mentioned kernels [26]. Thus, we 

use only RBF kernel functions in this study. 

 

2.2.2 SVR-DE model 

Differential evaluation (DE) algorithm is one of the evolutionary algorithms, which was 

introduced by Storn, Price [27]. It has been successfully applied in a wide variety of fields, 

from computational physics to operations research [28,29]. DE belongs to the class of 

genetic algorithms (GA) that use the biology-inspired operations of mutation, crossover, and 

selection on a population to minimize an objective function over the course of successive 

generations [30,31]. DE uses floating-point instead of bit-string encoding on population 

members, and arithmetic instead of logical operations in mutation. It has several advantages 

such as its simple structure, ease of use, speed, and robustness [29]. Fig. 2 presents the 

process of optimizing the SVR parameters with the DE. 
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Figure 2. The process of optimizing the SVR parameters with the DE 

 

 

3. ESTIMATION OF REQUIRED ROTATIONAL TORQUE TO OPERATE 

HORIZONTAL DIRECTIONAL DRILLING 
 

3.1. Database information 

The main scope of this work is to implement the above methodology in the problem of  

rotational torque estimation. Dataset applied in this study,  given in previous paper is 

borrowed  [2]. The collected data sets used to construct the database are from West–East 

Natural Gas Transmission Project in China. A total of 84 data sets were collected. Each data 

set contains the parameters of the axial force on the cutter/bit (P), rotational speed (r/min) of 

the bit (N), the length of drill string in the borehole (L), the total angular change of the 

borehole (KL), the radius for the ith reaming operation (Di), the mud flow rate (W), the mud 

viscosity (V) and the rotational torque (M). Partial dataset used in this study are presents in 

Table 1. Also, descriptive statistics of the all data sets are shown in Table 2. 
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Table 1: Partial dataset used for constructing the artificial intelligence models [2] 

Case 

No. 

  Input parameters                                                      Output parameter 

P 
(KN 10)  

N 

(r/min) 

L 

(m) LK  iD  

(mm) 

W 

(L/min) 

V 

(s) 

M 

(KN.m) 

1 11.5 15 146.01 1.177 558.8 3400 62 13 

2 12 15 251.27 2.3672 558.8 3400 65 16.5 

3 8.5 18 260.78 2.3777 762 3400 64 15.5 

4 11.5 18 316.82 2.7888 762 3400 64 24.5 

5 8 15 201.32 1.7156 558.8 2260 53 9.5 

6 13 15 287.13 2.3456 558.8 2260 53 10.5 

7 8.5 15 230.12 1.9308 762 3400 51 11 

8 12 18 345.53 2.8973 762 3400 65 19 

9 10 15 324.95 2.7761 762 3400 61 12 

10 5 15 258.36 2.0609 914.4 3400 53 15.5 

 

Table 2: Statistical description of dataset utilized for construction of the artificial intelligence 

models 

Parameter Min Max Average 

P (KN 10)  2 30.50 13.84 

N (r/min) 15 50 31.58 

L (m) 116.68 586.06 322.56 

LK  1.09 3.54 2.42 

iD (mm) 457.2 1117.6 760.79 

W (L/min) 500 4000 2233.09 

V (s) 42 88 63.51 

M (KN.m) 4 40 21.02 

 

3.2. Pre-processing of data 

In data-driven system modeling methods, some pre-processing steps are commonly 

implemented prior to any calculations, to eliminate any outliers, missing values or bad data. 

This step ensures that the raw data retrieved from database is perfectly suitable for 

modeling. In order to softening the training procedure and improving the accuracy of 

prediction, all data samples are normalized to adapt to the interval [0, 1] according to the 

following linear mapping function: 

 

min

max min

M

x x
x

x x





 (20) 

 

where x is the original value from the dataset, xM is the mapped value, and xmin (xmax) denotes 

the minimum (maximum) raw input values, respectively.  
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3.3. Estimation of required rotational torque using ANFIS models 

In this paper, all programs for ANFIS modeling and model validation (for estimation of 

rotational torque) were written in MATLAB. Fig. 3 shows the ANFIS topology. A dataset 

that includes 84 data points was employed in current study, while 59 data points (70%) were 

applied for building the model and the remainder data points (25 data points) were used for 

calculation of degree of accuracy. The specifications of the ANFIS models are illustrated in 

Table 3. Also The optimal parameters of the ANFIS models is shown in Table 4. Also, for 

different ANFIS models (ANFIS-GP, ANFIS-SCM and ANFIS-FCM), the MFs of the input 

parameters are shown in Figs. 4 to 6. 

 

 
Figure 3. Architecture of the ANFIS based on the GP, SCM and FCM 

 

Table 3: Characterizations of the ANFIS models 

ANFIS parameter ANFIS–GP ANFIS–SCM ANFIS–FCM 

MF type Gaussian Gaussian Gaussian 

Output MF Linear Linear Linear 

Number of nodes 294 410 650 

Number of linear parameters 1024 200 320 

Number of nonlinear parameters 28 350 560 

Total number of parameters 1052 550 880 

Number of training data pairs 59 59 59 

Number of testing data pairs 25 25 25 

Number of fuzzy rules 128 25 40 

 
Table 4: The optimal parameters of the ANFIS models 

ANFIS–FCM ANFIS–SCM ANFIS–GP parameter 

0 0 0 Error goal 

0.01 0.01 0.01 The initial step size 

0.5 0.5 0.5 Step size decrease rate 

0.9 0.9 1.3 Step size increase rate 
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Figure 4. MFs obtained by ANFIS-GP model 
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Figure 5. MFs obtained by ANFIS-SCM model 
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Figure 6. MFs obtained by ANFIS-FCM model 
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3.4. Estimation of required rotational torque using SVR-DE model 

In this paper, a hybrid SVR with DE was proposed to predict the required rotational torque, 

using MATLAB environment. A dataset that includes 84 data points was employed in 

current study, while 59 data points (70%) were applied for building the model and the 

remainder data points (25 data points) were used for model performance evaluation. 

Furthermore, as shown in section 2.2.1, the generalization ability of SVR is highly 

dependent upon its learning parameters, i.e., , ,C   . Consequently, the DE was used to 

manipulate these parameters and to form hybrid SVR– DE. 10-fold cross-validation 

performance measure was applied to training dataset along with SVR– DE to achieve 

reliable results. Related to the purpose, parameters regularizations for run of optimization 

models are presented in Table 5. 

 
Table 5: Regulated parameters for run the DE 

Parameter Value 

Maximum number of 

iterations 

100 

Population numbers (N) 50 

Mutation factor (F) 0.9 

Crossover rate (R) 0.2 

Upper and lower bound [0 1] 

Fitness Root Mean squared error 

 

The adjusted parameters  , ,C  
 

with maximal accuracy are selected as the most 

appropriate parameters. Then, the optimal parameters are used to train the SVR model. The 

best parameters which obtain by models are presented in Table 6. 

 
Table 6: Optimal values of the SVR parameters which obtain from used DE algorithm 

 Optimal value of σ 

parameter 

Optimal value of C 

parameter 

Optimal value of ε 

parameter 

SVR-DE model 3.3529 3714.45 0.2029 

 

 

4. MODELS PERFORMANCE EVALUATION 
 

4.1 Performance criteria 

To verify the performance of the models, two statistical criteria viz. mean squared error 

(MSE) and squared correlation coefficient (R2) were chosen to be the measure of accuracy. 

Let tk be the actual value and ˆ
kt be the predicted value of the kth observation and n be the 

number of observations, then MSE  and R2 could be defined, respectively, as follows: 
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4.2. Results and discussion 

In this study an attempt has been made to show the capability of the SVR-DE and ANFIS 

models to predict the rotational torque. The models of ANFIS and SVR-DE, for the 

prediction of rotational torque, were constructed using seven inputs. The part of the 

sensitivity analysis of ANFIS–SCM and ANFIS–FCM models are shown in Table 7 and 

Table 8. Furthermore, a comparison between the results of the ANFIS–GP, ANFIS–SCM, 

ANFIS–FCM and SVR–DE models for testing and training datasets is shown in Table 9. As 

it can be observed from this table, in the prediction of rotational torque using the ANFIS–

SCM model, R2 values of  0.85 and 0.99 for the training and testing suggest the superiority 

of this model in predicting the rotational torque to operate horizontal directional drilling. 

Also, it is found that the ANFIS–FCM is best method in the second order. Furthermore, a 

correlation between estimated values of rotational torque by ANFIS–GP, ANFIS–SCM, 

ANFIS–FCM and SVR–DE models and measured values for 84 data sets at training and 

testing phases is shown in Figs. 7 and 8. 

 
Table 7: Part of the sensitivity analysis of the ANFIS-SCM model 

Influence radius 
The number of periodic 

training process 
2

TrainR  TrainMSE  2

TestR  
TestMSE  

0.9 1000 0.9904 0.0006 0.6643 0.0452 

1.6 5000 0.8371 0.0091 0.7287 0.0128 

1.42 5000 0.8913 0.0061 0.7983 0.0072 

0.6 1000 0.9977 0.0001 0.8008 0.0064 

1.5 3000 0.8671 0.0074 0.8039 0.0076 

1.52 100 0.8756 0.0070 0.8242 0.0073 

1.2 100 0.9392 0.0034 0.8304 0.0070 

1.1 100 0.9643 0.0020 0.8387 0.0054 

1.39 100 0.9455 0.0030 0.8494 0.0060 

0.55 100 0.9982 0.0001 0.8517 0.0065 
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Table 8: Part of the sensitivity analysis of the ANFIS-FCM model 

Number of clusters 
The number of periodic 

training process 
2

TrainR  
TrainMSE  2

TestR  
TestMSE  

2 1000 0.8013 0.0111 0.6920 0.0139 

6 500 0.8247 0.0099 0.6925 0.0151 

10 100 0.8598 0.0080 0.7406 0.0132 

20 200 0.8710 0.0072 0.7509 0.0145 

8 1000 0.8686 0.0075 0.7653 0.0126 

22 100 0.8832 0.0065 0.7697 0.0182 

30 1000 0.8904 0.0061 0.7667 0.0169 

18 500 0.8840 0.0065 0.7922 0.0152 

25 100 0.9013 0.0055 0.8008 0.0134 

40 300 0.9386 0.0034 0.8066 0.0099 
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(c) 

 
(d) 

Figure 7. Correlation between measured and estimated rotational torque for training datasets, (a) 

ANFIS-GP, (b) ANFIS-SCM, (c) ANFIS–FCM, (d) SVR-DE 
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(b) 

 
(c) 

 
(d) 

Figure 8. Correlation between measured and estimated rotational torque for testing datasets, a) 

ANFIS-GP, b) ANFIS-SCM, c) ANFIS–FCM, d) SVR-DE 
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Table 9: A comparison between the results of the ANFIS–GP, ANFIS–SCM, ANFIS–FCM and 

SVR-DE models 

Model R2 MSE 

ANFIS-GP 
Training datasets 0.7468 0.0089 

Testing datasets 0.8658 0.0075 

ANFIS–SCM 
Training datasets 0.8517 0.0065 

Testing datasets 0.9982 0.0001 

ANFIS–FCM 
Training datasets 0.8066 0.0099 

Testing datasets 0.9386 0.0034 

SVR-DE 
Training datasets 0.7332 0.01522 

Testing datasets 0.6272 0.1929 

 

Also, a comparison between estimated values of rotational torque by ANFIS–GP, 

ANFIS–SCM, ANFIS–FCM and SVR–DE models and measured values for 84 data sets at 

training and testing phases is shown in Figs. 9 and 10. 
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(c) 

 
(d) 

Figure 9. Comparison between measured and estimated rotational torque for training datasets, (a) 

ANFIS-GP, (b) ANFIS-SCM, (c) ANFIS–FCM, (d) SVR-DE 
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(b) 

 
(c) 

 
(d) 

Figure 10. Comparison between measured and estimated rotational torque for testing datasets, 

(a) ANFIS-GP, (b) ANFIS-SCM, (c) ANFIS–FCM, (d) SVR-DE 
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5. CONCLUSIONS 
 

In this paper, the application of artificial intelligence methods for data analysis named 

ANFIS–FCM, ANFIS–GP, ANFIS–SCM and SVR–DE to estimate of the required 

rotational torque to operate horizontal directional drilling is demonstrated. The following 

remarks were concluded: 

 In this paper, a new approach namely support vector regression optimized by DE is 

proposed for predicting the required rotational torque to operate horizontal directional 

drilling. In our methodology, DE is applied as optimization tool for determining the 

optimal value of user defined parameters existing in formulation of SVR. The 

optimization implementation increases the performance of SVR model. 

 A comparison was made between SVR-DE model and ANFIS models (ANFIS–GP, 

ANFIS–SCM, ANFIS–FCM), using 84 data samples, and based upon the performance 

indices; MSE and R2, ANFIS-SCM was selected as the best predictive model. Also, it is 

found that the ANFIS–FCM is best method in the second order. 

 Consequently, it may conclude that ANFIS-SCM is a reliable system modeling technique 

for estimating required rotational torque to operate horizontal directional drilling with 

highly acceptable degree of accuracy and robustness. 

This study shows that the SVR-DE and ANFIS models (ANFIS–FCM, ANFIS–GP, 

ANFIS–SCM) approaches can be used as a powerful tool for modeling of some problems 

involved in geothechnical engineering. 
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